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The problem of reorienting a constellation of spacecraft such that the fuel distributed across the constellation
is both conserved and expended uniformly is considered. Results are derived for constellations with an arbitrary
number of spacecraft, assuming that the constellationis in free space, that the spacecraft massis time invariant,and
that the thrusters can produce thrust in any direction. An open-loop control algorithm is derived by minimizing a
cost function that trades off total fuel minimization and fuel equalization. The associated optimization problem is
shown to be amenable to standard algorithms. Simulation results using a four-spacecraft constellation are given.

Introduction

ULTIPLE spacecraft formation flying is emerging as an en-
abling technology for a number of planned NASA missions.
An example is the proposed separated spacecraft interferometry
missions.! (Also access“The New Millennium Separated Spacecraft
Interferometer;” by K. Lau, M. Colavita,and M. Shao athttp:/www.
spacebase.jpl.nasagov.) Because the life expectancy of a satellite is
limited by its fuel, fuel optimizationis critically important to forma-
tion control algorithms. For various applications of spacecraft for-
mation flying, including interferometry, the formation is required
to assume several orientations. In this paper we will consider the
problem of rotating a formation from one orientation to another. A
key observationis that the inertial point about which the formation
rotates determines the amount of fuel consumed by each spacecraft.
For example, if the formation rotates about a single spacecraft, then
that spacecraft will not consume fuel, while the other spacecraft
consume disproportionatelylarge amounts of fuel. The objective of
this paper is to evaluate strategies for determining a fuel-optimal
point of rotation given the current and desired constellation con-
figurations and rotation angles. In evaluating these strategies, two
quantities are of primary interest: the total fuel used by the space-
craft in the constellation and the distribution of fuel usage among
the spacecraftin the constellation. Not only is it desirable to min-
imize the total combined fuel expended by the formation during a
maneuver, it is perhaps even more desirable to ensure that no space-
craftis starved of fuel, thatis, it is desirable that all of the spacecraft
run out of fuel simultaneously. The reason that it is important to
avoid fuel starvation for interferometry missions is because when
one spacecraftruns out of fuel the mission must be terminated, even
though the remaining spacecraftstill have fuel. It turns out that fuel
minimization and equalization are competing objectives. The con-
tribution of this paper is to derive open-loop control strategies that
explicitly tradeoff these two objectives.
Central to these control strategiesis the determinationof the point
of rotation for the constellation. This paper will explore how to pick
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a point of rotation such that the fuel distribution at the end of the
maneuver is equalized and the total fuel expended by the constel-
lation is as small as possible. This is done by formulating a cost
function containing two terms. The first term penalizes the fuel ex-
pended during a maneuver. The second term is motivated by the
entropy function from information theory that has the property that
itis maximized by a uniform probability mass function? thereby pe-
nalizing an unequal fuel distributionat the end of the maneuver. The
point of rotation for the constellation is obtained by optimizing this
cost function. Once the point of rotationis determined, it is fixed for
the duration of the constellationrotation and cannot adapt to reflect
fuel expenditure that may be different than what was anticipated.

Wang and Hadaegh developed formation flying strategies for
tightly controlled satellite constellations using nearest neighbor
tracking laws to maintain relative position and attitude between
spacecraft® Their approach is extended in Ref. 4 to the problem
of continuous rotational slews.

The application of space-based formation flying to interferome-
try is discussed in Ref. 1. DeCou’ studies passive formation control
for geocentricorbits in the context of interferometry. McInnes® uses
Lyapunov control functions to maintain a constellationof satellites
in aring formation. Ulybyshev’ uses a linear quadratic (LQ) regula-
tor approachforrelative formationkeeping. Formation initialization
has been studied in Ref. 8.

An approach related to Ref. 3 is reported in Refs. 9 and 10. The
basicideais to treatthe spacecraftconstellationas a systemof bodies
that are fixed relative to each other and then to control the system
as a whole.

Preliminary results were originally reported in Ref. 11, where
fuel optimization was performed in two dimensions. Similar results
are reported in Ref. 12, where the spacecraft are not required to
maintain relative positioning throughout the maneuver.

The remainder of this paper is organized as follows. First, our
notationis defined, and the basic assumptions made throughoutthe
paper are stated. Second, the cost function is defined, and the basic
open-loop control algorithm is derived. Third, the cost function is
analyzed and an optimization algorithm is discussed. Fourth, the
simulation results using a constellation with four spacecraftare dis-
cussed. Finally, the last section gives our conclusions.

Definitions and Assumptions

This section establishes the notation and assumptions that will be
used throughoutthe paper. Assuming that there are N spacecraftin
the constellation, define N + 2 coordinate frames as follows. Let
Cy be the inertial coordinate frame with orthonormal basis vectors
{io, jo, ko }. Let Cr be a coordinate frame designated as the rotation
frame, with orthonormal basis vectors {ig,jr, kr}. The frame Cg
is used to specify the point of rotation of the constellation. Each
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Fig.1 Problem geometry.

of the N spacecraft is associated with a coordinate frame C, with
associated orthonormal bases {ig, je, ke}.

Let rg, and ry be the position vectors of coordinate frames Cp,
and Cp, respectively, in the inertial frame. Also let rp¢ be defined as
the vectors from Cy to Cp. To maintain the constellation formation
throughouta rotation maneuver, it is desired thatr g remain constant
with respect to the rotation frame Cg. The geometry is shown in
Fig. 1.

Define M, to be the mass of the £th spacecraftand fe(7) to be the
fuel mass contained on the £th spacecraftat time 7. Furthermore, as-
sume each spacecraftis equipped with an orthogonalset of thrusters
capable of producing thrust T in any direction. The dynamics for
the £th spacecraftare modeled by the following equations:

. Te, fe(t) >0
Mo = .
0, otherwise

fo= =7 Tuel + |Tpel + 1Tel),  fe(t) > 0
€= 0, otherwise (1)

where y is a proportionality constant and T,¢, T,¢, and T;¢ are the
axial, radial, and transverse components of T, expressed in the Cp
coordinate frame.

The control objective is to rotate the entire constellation through
an angle ¢ about a unit vector z that is referenced to the coordi-
nate frame C. This rotation can be specified by a unit quaternion
q =¥ sin((ﬁ/Z), cos((f;/Z)]T. Given a rotation quaternion ¢, the
quantitiesz and ¢ can be found by the inverse quaternion formulas

givenin Ref. 13.
The major assumptions made throughoutthe paper are as follows.

1) The constellationis in free space. 2) The thrust magnitude of the
thrusters for an individual spacecraft is finite, but collectively the
thrusters can produce force in any direction. 3) Each spacecraftis a
rigid body with mass thatis time invariant.4) Rotations of the space-
craft are carried out using means other than thrusters, for example,
momentum wheels; therefore, rotational motion is not considered
when calculating fuel usage. 5) The position r, of each spacecraft
can be determined with respect to the coordinate frame Cy. 6) The
thrust magnitude is allowed to range continuously between the sat-
uration limits of the thruster.

Note that these assumptionsimply perfectnavigationinformation
and perfectthrusterperformance.Robustnessof the derived methods
with respect to imperfect navigation information and thrusters has
not been studied.

If any of these assumptions are relaxed, the results of this paper
will need to be modified. For example, if the constellationis not in
free space, then orbital dynamics will affect the fuel consumption.If
certain thrustdirections cannot be produced, then a sequence of ma-
neuvers may be required to accomplisha rotation, thereby requiring
a different fuel analysis. If the mass of the fuel is on the order of the
mass of the spacecraft,then the analysis would need to be modified to
use the rocketequation. Similarly, rotationaldynamics would add an
additional level of complexity. Addressing the last two assumptions
is necessary to accomplish fixed-formation maneuvers in general.

Static Rotations

This section derives an algorithm for picking the location of
the rotation point, that is, rg, such that, given the initial fuel dis-
tribution {fi(%), ..., fx(to)}, the final fuel distribution {fi(¢y +
t), ..., fn(ty + t;)} minimizes the following functional:

N
J = min{ Z [fe(to) = felto + )T

r
Bl e=

N
Jelto +17) feto + t5) }
+u log )
; 2Y fitott) O EV ity

The first term in this functional represents the total amount of fuel
expended by the constellation. The second term is motivated by the
negative entropy of a probability distribution (Ref. 2, pp. 12-15),
which is minimum for a uniform distribution, that is, the second
term will be minimized when fi(ty + t;) = f;(t, + t;) for all
i,jE{L...,N}L

An alternative to entropy is the function

j=1 j=1

N N
DD Uit + 1) = filtg + )P 3)
i=1 j#i

which is also minimized when f;(ty + t;) = f;(fy + t;). The use
of Eq. (3) gives similar results to those reported in this paper. The
entropy term was selected because in simulation studiesitequalized
the fuel distribution more uniformly.

To minimize Eq. (2), we need to express fe(fo + t;) in terms of
rg.Foragivenrg, we find fe(fy +1) in two steps: First, determine a
constellationrotation trajectory within the thrust capability of each
spacecraftin the constellation. Second, calculate the fuel consumed
by each spacecraftin following the rotation trajectory. The details
of these steps are discussed in the next two sections.

Constellation Rotation Trajectory

Note that the rotationalaccelerationfor the constellationis limited
by the linear acceleration capability of each spacecraft and by the
distance of each spacecraftfrom the axis specified by z. Because we
are considering the rotation of individual spacecraft about a fixed
axis in space, the acceleration of each spacecraft is composed of
transverse and radial (centripetal) accelerations with respect to the
rotation axis: ag = a,¢ + a,.¢, where a,p and a, ¢ are the transverse
and radial accelerations, respectively.

Let dp be the shortest vector between the rotation axis z and the
£th spacecraft, and define ¢ (¢) as the constellation rotation angle.
The vector dy can be found by using the geometry shown in Fig. 2.
The projection of rge onto the z axis is given by 2" rre, where z
and ryy are referenced to the same coordinate frame. Therefore, the
shortest vector from the z axis to Cp is

de=rre— @' rroz = (I — 22" )re )

where [ is the 3 X 3 identity matrix.

For generalrotations, |la,¢|| = ||dell¢? and |la.ell = ||d¢ll$; there-
fore it can be seen that the magnitude of the acceleration for each
spacecraftis proportional to the distance of the spacecraft from the
rotation axis:

llagll = lidelty/ $(1)* + ¢(1)*

G d =(I-22")r,
e

Fig.2 Distance of the £th spacecraft to the z axis.
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If we define 7, as the magnitude of the smallest available maxi-
mum thrust in any direction for the €th spacecraft (i.e., spacecraft-£
can producea thrustof at least 7 in any specified direction), then the
lowest maximum linear acceleration that each spacecraftis capable
of is 7o/ My:

delhy/ 6(1)> + §(1)* < ze My

The maximum angularaccelerationof the constellationwill be max-
imally constrainedby the linear accelerationcapability of the space-
craftin the constellation. Specifically, the spacecraftwith the largest
ratio between the distance from the z axis (||d,||) and its acceleration
capability (zp/ M) will limit the angular acceleration of the entire
constellation. Denoting the index of the limiting spacecraft as 8
gives

B =arg 1 gleajN(Me/ 79 |ldel| (5)

The angular motion of the entire constellation, given by ¢ (#), must
be constrained according to the following relation:

VO + () < 1/ Myl ©)

By constraining the motion in this manner, the required thrust to
track whatever trajectory is specified will never exceed the thrust
capabilities of any of the spacecraft. Furthermore, this conservative
approach leaves some excess thrust capability for rejecting distur-
bances or responding to tracking errors.

To estimate the amount of fuel spent by each spacecraft during
a constellation rotation, a trajectory for the rotation must be deter-
mined. The analysis given here assumes that the constellation is
rotated via a trajectory corresponding to a bang-off-bang acceler-
ation profile. This thrust profile is optimal (Ref. 14, pp. 675-710)
for a double-integratorplant with actuator saturation. Although lin-
ear accelerationsduring the acceleration and deceleration phases of
the trajectory are not constant for each spacecraft (the centripetal
componentchanges with ¢), the assumption of a bang-off-bangtra-
jectory is a reasonable approach for the constellationrotation prob-
lem. The analysis approach taken is not limited to bang-off-bang
trajectories. Other trajectories, such as polynomialsplines, could be
analyzed as well.

Letting ¢(#) be the rotation angle of the constellation about the
Z axis at time #, where 7, is the starting time for the rotation, the
rotation trajectory for the constellation is given by the following
equations

a, 0=<r=<t,
¢(t) = 0’ tw <t st’f tw
—a, t;—t, <t <t
at, 0<t<t,
d() =< af,, te <t <t; —t,
oty —10), ty—t, <t =<ty

¢(t) = a[twt - t,2v /2]’
alt, (t; —1,) =t —0?/2], tp—1t, <t <t;
)

where 7, is the width of the thrust pulse.

Notice that the maximum linear acceleration for each of the
spacecraft in the constellation occurs at t — #, = t,, when (Ii(t)
and ¢ (1) are at their maxima simultaneously: ¢ (¢, + #,) = o« and
o(t, + 1) = at,,.

With the constellation geometry and trajectory type determined,
the nextstep is to formulate an expressionthat will allow us to solve
for the unknown trajectory parameters (a and #,, ) given the constel-
lation parameters (||dgl|, 75, and Mj) and the specified trajectory
parameters (¢ and t7). This is done by first setting the maximum

acceleration of spacecraft 8 (which is tracking the bang-off-bang
rotation trajectory) to the acceleration bound:

I/ o2 + (o1, )" = 131 M, ®)

Noting that 43 = ¢(ty +19) = o, (fy — t,,), we can solve for a to
obtain

o= ¢?/tw(tf - tw) (9)

By substituting for « in Eq. (8) and manipulating the resulting ex-
pression, we find that

$? § o w )
c2(1 —c¢)? + (1 —c)* - ( ||dﬁ||Mﬁ (10)

where

t, =cty, 0<c=<1 (11D

Further manipulation yields a sixth-order polynomialin c:
W(c) = c® —4c® +6¢* —4c® — [(§* + §* — K)/ K]c?

+2(¢°/K)e — §* /K =0 (12)

where K = (r;;t?/lldﬁIIMﬁ)z. When solving this expression for c,
we are interested in the real roots that fall within the range (0, %) be-
cause roots outside this range are physically meaningless. As Fig. 3
shows, solution of Eq. (12) results in four scenarios of interest: 1)
no roots between 0 and %, 2) two identical roots between 0 and %,
3) two different roots between 0 and %, and 4) one root between 0
and % Case 1 results when the trajectory duration  is too short for
spacecraft B to accomplish the trajectory given the rotation angle
and its acceleration capabilities. Case 2 occurs when the minimum
possible trajectory duration that is within the capabilities of space-
craft B is chosen. Case 3 is unusual in that two different values of ¢
are found that resultin Eq. (8) being satisfied. However, the smaller
value of ¢ gives a more fuel-efficient trajectory and, therefore, is
chosen when case 3 occurs. Case 4 occurs when the acceleration
capabilities of the spacecraft are not stressed by the selection of 7.

In selecting the trajectory duration, two specific conditions are
of interest: case 2 that results in the minimum possible trajectory
duration for the formation and the transition between cases 3 and 4
whereonerealrootis equalto % . We will considerthe latter condition
first.

If 7, is chosen to be sufficiently large, case 4 results, and the
desired trajectory is well within the capabilities of the spacecraft.
The transitionbetween cases 3 and 4 occurswhen,, = #,/2. Letting
t, =1t;/2inEq. (9) and substituting into the acceleration bound in
Eq. (8) yield

w L9
Mglldgll )~ (1,/2)*  (1,12)"

Solving for ¢, gives

try = 2\/(M/3”d/3”/fﬁ)‘ﬁ\/1 + ¢2

When t, =t,, the resultis case 3 with one of the roots of Eq. (12)
beingexactly % asexpected.If 7, > 774, thenthereis always a unique
solution in the interval (0, %).

Of greater interest is the minimum possible trajectory duration
tsmin for the spacecraft formation (case 2). For a given constella-
tion of spacecraft (with predetermined capabilities) and a specified
rotation angle §, the selection of trajectory duration ¢ + determines
which of the cases results. As can be seen from Fig. 3, case 2 occurs
when ¥ (¢) = 0 and d¥/dc = O for the same ¢ = ¢;:

d¥v
E = \{J(C)L':q) =0
c=cQ
where
dv 2 14 + 2 K 12
— =6¢>=20c*+24c% —12¢% — Mc+2¢— (13)
dc K K
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Fig.3 Roots of P(c).

is determined from Eq. (12). By the equating of the expressions for
W(c) and d'¥/dc, the following polynomial expressionresults:

¢® —10¢ + 26¢* — 28¢> — [(¢* + ¢* — 13K)/ K]c?

+[2(6* + 29> — K)/K]c —3¢*/K =0 (14)

min/lldﬂIIMﬂ)z. This expression can
be solved for ¢ = ¢, by finding the real root between 0 and % Once
¢o is known, the minimum final time 7, can be calculated by
rewriting Eq. (10) as

RAAYEN # \I
Tfmin = ( 7 ) C%(l — CU)Z + = 60)4 (15)

Notice that 7, ,;, is dependent on ¢, that ¢, is dependent on K,
and that K is dependent on f/ . To solve for #;min, Eqs. (14)
and (15) are solved recursively starting with an initial estimate of
trmin = f74. Convergence to the solution typically requires only
several recursions. From the value of ¢ found from the roots of
W¥(c), values for o and ¢,, can be calculated from Egs. (9) and (11),
respectively.

In summary, given a specified constellation rotation angle ¢, tra-
jectory duration f; > 7y, thrust capability 7z, mass Mpg, and dis-
tance from the rotation axis ||dg|| of the limiting spacecraft, the
parameters that complete the characterization of the constellation
rotation trajectory can be determined: the switching time #,, and the
angular acceleration a.

In this development, we treat the trajectory duration, or alterna-
tively the time required for the formation reorientation to be com-
pleted, as a parameter to be selected. Intuitively, the trajectory du-
ration also strongly affects the amount of fuel required to complete
the maneuver. If fuel minimization is a high priority, the trajectory
duration should be selected as large as possible while still meeting
the mission objectives.

where, in this case, K = (7;t2

Fuel Usage

We must now derive an expression that relates the fuel expended
by the £th spacecraft to the trajectory of the constellation. The fuel
usage foreach spacecraftwill vary throughoutthe rotation maneuver
and can be calculated for each of the three phases of the trajectory:
acceleration, coast, and deceleration.

During the acceleration phase, fuel is expended to accelerate the
spacecraft transversely and radially with respect to rotation about
the z axis. By drawing on Eq. (1), the fuel expended by spacecraft
£ during the acceleration phase can be calculated as follows:

fe(ty + 1) — felto)

tw + 10
—7] (Tl + |Toel + |T,0l) dr
10

tw t+19

[+ &t = 19)*] dt

—J/Me”de”j

fo

t3
—y Mlldella| 1, + a?

During the coast phase of the trajectory (t,, < t —ty <t; —1t,), the
spacecraft will need to thrust to provide the centripetal acceleration
required to track the arc traced out by the constellation. The fuel
required to accomplish this is given by

ff(tf —t, t t(l) - ff(tw + t(l)

ty—tw+1
—7] (Tl + 1 Toel + | Tpel) dt
tw +19

tf—tw+1
242
—y Mlldella tj dr

tw t+19

—y Mlldgllo?t2 (¢, — 21,)

During the deceleration phase, fuel is expended to bring the space-
craft to a stop and to keep the spacecraft rotating about the z axis.
Fuel usageis calculatedin a manner similar to the precedingphases:

Se(ty + 10) = fe(ty — 1, +1o)

tr+1o
—7] (ITsel + [ Tel + | Tiel) dt
ty—tw+1

ty +19

—?/Me”de”j (o + o (ty — 1 +15)*) dt

ty —tw +10

t3
—yMelldelle| 1, + a?
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The total fuel consumed by the £h spacecraftduring the rotation of
the constellation is given by the sum of the fuel consumed during
each of the three phases:

felty +10) = felto) = =y Mlldella(2t,, + a1, — 2ar))  (16)

Optimal Point of Rotation

The results of the preceding section can be summarized by the
following algorithm for computing the cost function J in Eq. (2).

Algorithm 1: Input rg, g, t;, p, and {ze, Me, re(ty), fe(to)}p_
and compute the following: 1) z, ¢; 2) rre(fy) = re(ty) — rg, £ =
1,...,N;3)dety),€=1,..., N, fromEq. (4); 4) B from Eq. (5);
5) ¢ from Eq. (12); 6) t,, from Eq. (11); 7) a from Eq. (9); and 8)
fe(t; + tp) from Eq. (16). The outputis J from Eq. (2).

It is evident from Eq. (2) and the algorithm just listed that J is
a complicated function of r. It is natural to wonder about the dif-
ficulty of optimizing J. The next section contains a mathematical
analysis of the cost function and is followed by our recommenda-
tions for an algorithm that optimizes J as a function of r.

Analysis of the Cost Function

The objectiveof this sectionis to analyze the nature of J. Figure 4
shows four contour plots of J, projected onto a plane perpendicular
toz, as a functionof ri for the parameterslisted in Table 1. The X’s
in Fig. 4 represent the location of the spacecraft. The Orepresents
the center of inverse fuel mass defined as

N, re(t) Yoo
O = - 17
= 2 / 2. 75(t) (a7

£=1 j=1

Intuitively, r(;) will be close to spacecraft that are low on fuel.

Figure 4a shows J when the initial fuel is equally distributed among
the spacecraftand where fuel equalizationis emphasized. Figure 4b
shows J when fuel minimization is emphasized. When pu =0, the
initial fuel distribution is not relevant. Figures 4c and 4d are for
medium values of p (1 = 100). Figure 4c shows J when one space-
craftis almostdepleted of fuel. In that case, the optimal r is located
close to the spacecraft that is depleted of fuel. Figure 4d shows J
when two spacecraft are almost depleted of fuel. In that case, the
optimal r¢ is centered between the spacecraft that are low on fuel.
Figure 4 shows cusps in the contour plot J that appear to be
aligned along certain lines. These cusps suggest that the gradient
of J is discontinuous along these lines. Also, the smoothness of
the contours away from these lines suggest that J is continuously
differentiablein most of IR?. These observations will be made pre-
cise in the following lemmas. The apparent regions come from the
partitioningdue to Eq. (5). Let D; be the region in IR? that is farther
from the jth spacecraft than from any other spacecraft (weighted
by M;/ ;). These regions can be defined explicitly as follows. Let

M
D; = {x€R3:j =arg max —E||de—x||}
7

1<£<N
M M;
=ﬂ {x €ER’: —L|ld; — x|l > —Ild; —xll}

£ K i

Table1 Parameters for Fig. 4
Parameter Value
q [0, 0, sin(7/2), cos(r/2)]"
ri(tg), m (110,0,0)"
ra(fp), m (0, 200, 0, 0)”
r3(fp), m (500, =500, 0)"
r4(t9), m (=100, =100, 0)
7, N (700, 7004, 7001, 7001t)
M, kg (200, 100, 50, 200)
tr, s 40,000
7, s/m 0.000088673

300

200

100

0

meters

~-100

-200

-300
~300 -200 -100 0 100 200 300
meters

a) u=10* and fety) =[1,1,1, 1] kg

-100

-200 \

-300
-300 -200 -100 0 100 200 300
meters

b) p=0and fety) =[1,1,1,1] kg

meters

300

200

100

Q

meters

~100

-200

-300 ™
-300 -200 -100 o] 100 200 300
meters

¢) u=10% and fo(ty) = [1,1,.01,1] kg

300

200 Wm
=

-300
-300 -200 -100 0 100 200 300
meters

d) p=10%and fety) =[.01,1,1,.01] kg
Fig.4 Contour plots of the function J.

Define Dj as the closure of Dj, that is,
- M; M,;
D, =ﬂ {x eER’: —L|ld; — x|l =—1ld, —xll}
L T T
i
Each pair of spacecraft define the line
(x e R : (M;/7))lld; — xIl = (M;/7)lld; — ]I}

These lines form the boundaries of D;. Figure 5 shows a sequence
of plots that describe how D; is defined for a constellation of
four spacecraft. Figures 5a-5c define the regions corresponding
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to (Ms/ w)|lds — x|l > (M / 2)lldy — xll, (M3/w5)llds — x| > (M,/
n)lld, —x|l, and (M3/w)llds — x|l > (M,/ ) |ld, —x||, respec-
tively. Figure 5d defines the region D; as the intersection of these

three regions. In a similar manner, regions Dy, D,, and D, can be
defined.

The following two lemmas ensure that for any configuration of

N spacecraft, there are at most N disjoint regions that completely
fill R3.

4

%%%dexﬂ>ﬂdrxﬂ

llc;S-xII>Ild4-xlI Z%/}

.._
AR
>

a) c)

]
)
N

L
\

v
S

Idsxli>ld-x
forallj

) //////// ’

b) d)
Fig.5 Defining region T for the objective function J.

BEARD, MCLAIN, AND HADAEGH

Lemma 1: D;ND; =@,i # .

Proof: See the Appendix.

Lemma 2: The jv=lDi =1R".

Proof: See the Appendix.

The contours in Fig. 4a indicate that although J is not convex, it
is continuousand has a unique minimum. The questionis whether a
gradientdescentalgorithmcan be used to minimize J. The following

theorem characterizes the continuity of J and its gradient.
Theorem 1: If

N
D feltp) £0
2=1
then the following statements hold.
1) J(rg) is continuouson IR3.
2)If M;/t, =M;/t; foralli, j € 1,..., N, then J(rg) is con-
tinuously differentiable on IR®.
3) Otherwise, it is continuously differentiable on U21=1D€ (but
not on the boundaries).
Proof: See the Appendix.

Optimization Procedure

All that remains is to choose an optimization algorithm that min-
imizes J in Eq. (2) to find the fuel optimal center of rotation rp.
Because gradient information is available, it is possible to use a
gradient descent algorithm that is modified to handle the possible
discontinuities between the regions Dp. An alternative is to use a
direct search method such as the Nelder-Mead Simplex method de-
scribed in Refs. 15 and 16 (pp. 305-309). The advantage for this
particular problem is that derivative information is not used, and
the algorithm easily passes over the discontinuities in the gradient.
Also, efficient implementations of the Nelder-Mead algorithm exist
(Ref. 17,pp. 2.4-2.5). One of the disadvantagesof the Nelder-Mead
algorithm is that it can be very expensive and/or time consuming
for problems with objective functions that are severely elongated
or when the dimensions of the problem become large.!> Because
Eq. (2) does not suffer from either of these problems, it appears to
be well suited for our application. The Nelder-Mead algorithm is

o X 10~ Single Rotation x 10~ Muitiple Rotation

4

2

0

a)

x 107 X 10“1
6 3
4 2
p,: 1 00
2 1
0 0
1 2 3 4
b) e)
x 107
[ 6
4 4
u=1 0°

2 2
0 1 2 3 4 0 1 "2 3 4
c) : 1)

Fig.6 Fuel used after a single rotation.
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initialized, by using the center of inverse fuel mass at time #y, de-
fined in Eq. (17) and shown with a Oin Fig. 4. The point r(RO) is seen
to be relatively close to the desired minimum of J.

Based on the constellation rotation trajectory determined by the
optimization process, the open-loop control law for each of the £
spacecraft can be found:

T = Meag = Me(a,e + ace)

Meloz Xrre+ (at)’z X (z Xrge)l, 0<t <1,

My(at,)’z X (z Xrge), t, <t <t;—t,
Mo[—az Xrpl+ (a(t; — 1))z
X(z Xrge)l, tp—t, <t <t

(18)

The torquefor0 <t <1, causesthe formationto spinup, the torque
fort, <t <t; —f,, causes the formation to spin at a constant rate,
and the torque for #; — f,, <t <t, causes the formation to spin
down.

Simulation Results

This section describes simulation results using the approach de-
scribed in this paper. Simulations were performed in MATLAB®
and Simulink. The numerical values used for the simulation are
given in Table 1 with the exception that the mass distribution is
changed to M = (200, 200, 200, 200) kg. The initial fuel distribu-
tion is fe(to) =(1,1, 1, 1) kg. The parameter u allows tradeoffs
between minimizing the total fuel used and equalizing fuel across
the formation. When p =0 fuel is minimized, as u — oo fuel is
equalized. The fuel used by each spacecraft after a single 90-deg
rotation is shown in Fig. 6. Figure 6a is for u =0, that is, fuel min-
imization; Fig. 6b is for u =100, that is, a tradeoff between fuel
minimization and fuel equalization; and Fig. 6¢ is when p =107,
that is, fuel equalization. The total fuel used by all of the spacecraft
is 0.0014 kg for u =0, 0.0015 kg for 1 =100, and 0.0016 kg for
u =10°. Notice that when fuel is equalized, it is not necessarily
minimized. In general, minimization and equalization are conflict-
ing criteria.

The fuel used after 15 consecutive randomly selected rotations
is also shown in Fig. 6. Cases where . =0, u =100, and u = 10°
are shown in Figs. 6a, 6b, and 6c¢, respectively. For u =0 the total
fuel used was 0.0058 kg, for u =100 kg the total fuel used was
0.0107 kg, and for u = 10° the total fuel used was 0.0116 kg.

Conclusions

The physical location of the axis about which a constellation of
spacecraftrotates determines the fuel consumed by each spacecraft
during the maneuver. We have derived an algorithm that finds the
optimal location for the axis of rotation, trading off overall fuel min-
imization and fuel equalization across a constellation of spacecraft
in free space. The simulation results show that fuel minimization
and fuel equalization are conflicting criteria. Note that minimum
fuel rotations will result in fuel starvation for some spacecraft. Fuel
is simultaneously minimized and equalized only if the spacecraft
are an equal distance from the center of inverse fuel mass, and the
thrust capabilities of the spacecraftare identical. This would be the
case for three identical spacecraft in an equilateral triangle, but is
not true if the spacecraft are not identical.

The control law derived defines fuel optimal trajectories for each
spacecraftin the constellation. These trajectories could be used for
feedforward control, with additional feedback used forrobustnessto
uncertaintiesand disturbancerejection. Because the approach taken
is conservative (only the most performance-limited spacecraft is at
its thrust limit at just two instants during the trajectory), the addi-
tional thrust required for feedback control could be easily accom-
modated by the spacecraftimplying that the prescribed trajectories
would still be feasible.

Finally, the optimization algorithm described could be used to
determine the amount of fuel required by an entire interferometry
mission. If the desired life of the mission and the desired star loca-
tions are known, the amount of fuel required to transition between

stars can be estimated with the algorithm described. This could
be embedded in a larger optimization algorithm that computes the
optimal sequence of stars and the resulting fuel required for each
spacecraft. If it is desired, for cost purposes, that the spacecraft be
identical, then the optimizationalgorithm should be performed with
large u.

Appendix: Proofs
Proof of Lemma 1
Suppose that x € D; N D;, then

x €D = M;/7)lld; — x| > (M,'/T,')”dj —xll
X € Dj = (MI/TI)“dI —x|| > (Ml/‘l'l)”dl —x||
which is a contradiction.

Proof of Lemma 2

Pick an arbitrary x € IR. Suppose that x ¢ U ,D;. Now x §Z-‘
D, = M,/ t)|ld, — x| < (M;/7; )IId —x|| for some jEeq2,.
N}. Renumber the spacecraft such that Jj =2, then (M, /T1)||d1
x|l < (Ma/w)lldy —x|l. Now x ¢ D, = (Ma/n)lldy —x|l <
(M;/7; )IId —x|| for some j € {3,..., N}. Renumber the space-
craft siich that] =3, then (M]/‘L'l)”dl —x|| < (M,/ v)|ld, — x| <
(M5/ t5)|ld; — x||. Repeat the argument for Ds, ..., Dy _, to get
M/ t)lld, = x|l < (My/p)lldy = x|l < -+ < (My/ y)lldy — x|

Now x ¢ DN = (My/ty)lldy —xll < (M;/7)lld;
] € {l,..., N — 1}, which 1sac0ntradlct10n

— x|| for some

Proof of Theorem 1
Differentiating Eq. (2) with respect to rg gives

Z 20 felto) - fe(m]af‘f( )

arR

afelty)
[ Z fitt) | =5,

2
of:(t,
~ felty) [ S [ A
Jj Jj

Assuming that
> fit) >0
J

then 8J/0rg is continuous if f;(¢;) and 0 f;(t;)/0ry are continu-
ous in rg. From Egs. (16), (9), and (11), we obtain the following
expression for f;(t,):

fity) = fi(to)

2" £2 4"2
—yMind,.u[ ! "”]

1{(1—c) t;(1—c? 3i,(1—c)
Both ¢ and ||d;|| depend on rx so that
afi(ty) _ ofi(ty) olld;|l afi(tf)ﬁ
arR 8||d,|| arR oc arR

where

ofilty) _ M‘[ 2% & 4<ﬁ2c]

ol — t(1—c) t;,(1—c)? 1,(1—c)
is a continuous function of ||d; || and

M—_ M. 2(5 + 2(52 —
e M Ta=or T =0y

46%(1 + ¢)
(1= c)3
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is continuousin c aslongas c € [0, 1]. Here ||d;|| = [|( —zz")(r; —
rp)ll is clearly a continuously differentiable function of rg, and
so the continuity properties of J are determined by the continuity
properties of ¢, where ¢ is a root of the sixth-order polynomial
given in Eq. (12), which can be rewritten in the following form that
is standard for the Evans root locus:

L[ =(* + 22 + 2% — §?

1+ — =0
K| ¢®—4¢> +6¢* —4c? + ¢2

By standardroot locus theory, the roots are a continuous function of
1/K = |ldg ||2M§/r§t;, where ||dg|| and B are functions of ry. Here
Bis aconstantfunctionofry ineachregionD;, with a discontinuous
switch on the boundaries. Therefore, 1/ K will also be a continuous
functionofrg oneachregion,therebyestablishingstatement3 of the
lemma. At the boundaries||dg || is continuous(but not differentiable)
and so 1/K is continuous at the boundaryif M;/z; = M,/ t; forall
i and j, establishingstatement2. Because 0 J/0ry is continuous for
all buta set of measure zero (the region boundaries), J is continuous
on all of IR3.
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