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The problem of reorienting a constellation of spacecraft such that the fuel distributed across the constellation
is both conserved and expended uniformly is considered. Results are derived for constellations with an arbitrary
number of spacecraft, assumingthat the constellation is in free space, that the spacecraft mass is time invariant,and
that the thrusters can produce thrust in any direction. An open-loop control algorithm is derived by minimizing a
cost function that trades off total fuel minimization and fuel equalization. The associated optimization problem is
shown to be amenable to standard algorithms. Simulation results using a four-spacecraft constellation are given.

Introduction

M ULTIPLE spacecraft formation � ying is emerging as an en-
abling technology for a number of planned NASA missions.

An example is the proposed separated spacecraft interferometry
missions.1 (Also access“TheNewMillenniumSeparatedSpacecraft
Interferometer,” by K. Lau, M. Colavita,and M. Shao at http://www.
spacebase.jpl.nasa.gov.) Because the life expectancyof a satellite is
limited by its fuel, fuel optimizationis critically important to forma-
tion control algorithms. For various applications of spacecraft for-
mation � ying, including interferometry, the formation is required
to assume several orientations. In this paper we will consider the
problem of rotating a formation from one orientation to another. A
key observation is that the inertial point about which the formation
rotates determines the amount of fuel consumedby each spacecraft.
For example, if the formation rotates about a single spacecraft, then
that spacecraft will not consume fuel, while the other spacecraft
consume disproportionatelylarge amounts of fuel. The objectiveof
this paper is to evaluate strategies for determining a fuel-optimal
point of rotation given the current and desired constellation con-
� gurations and rotation angles. In evaluating these strategies, two
quantities are of primary interest: the total fuel used by the space-
craft in the constellation and the distribution of fuel usage among
the spacecraft in the constellation. Not only is it desirable to min-
imize the total combined fuel expended by the formation during a
maneuver, it is perhaps even more desirable to ensure that no space-
craft is starvedof fuel, that is, it is desirable that all of the spacecraft
run out of fuel simultaneously. The reason that it is important to
avoid fuel starvation for interferometry missions is because when
one spacecraftruns out of fuel the mission must be terminated, even
though the remaining spacecraft still have fuel. It turns out that fuel
minimization and equalization are competing objectives. The con-
tribution of this paper is to derive open-loop control strategies that
explicitly tradeoff these two objectives.

Central to these control strategiesis the determinationof the point
of rotation for the constellation.This paper will explore how to pick

Received 4 January 1999; revision received 6 July 1999; accepted for
publication 30 July 1999. Copyright c° 1999 by the American Institute of
Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein for
Governmental purposes.All other rightsare reserved by the copyrightowner.

¤ Assistant Professor, Department ofElectrical andComputerEngineering.
Member AIAA.

†Assistant Professor, Department of Mechanical Engineering. Member
AIAA.

‡Senior Research Scientist and Technical Supervisor, Automation and
Control Section. Associate Fellow AIAA.

a point of rotation such that the fuel distribution at the end of the
maneuver is equalized and the total fuel expended by the constel-
lation is as small as possible. This is done by formulating a cost
function containing two terms. The � rst term penalizes the fuel ex-
pended during a maneuver. The second term is motivated by the
entropy function from information theory that has the property that
it is maximizedby a uniformprobabilitymass function,2 therebype-
nalizingan unequalfuel distributionat the end of the maneuver.The
point of rotation for the constellation is obtained by optimizing this
cost function.Once the point of rotation is determined, it is � xed for
the duration of the constellation rotation and cannot adapt to re� ect
fuel expenditure that may be different than what was anticipated.

Wang and Hadaegh developed formation � ying strategies for
tightly controlled satellite constellations using nearest neighbor
tracking laws to maintain relative position and attitude between
spacecraft.3 Their approach is extended in Ref. 4 to the problem
of continuous rotational slews.

The application of space-based formation � ying to interferome-
try is discussed in Ref. 1. DeCou5 studies passive formation control
for geocentricorbits in the context of interferometry.McInnes6 uses
Lyapunov control functions to maintain a constellationof satellites
in a ring formation.Ulybyshev7 uses a linear quadratic (LQ) regula-
tor approachfor relativeformationkeeping.Formation initialization
has been studied in Ref. 8.

An approach related to Ref. 3 is reported in Refs. 9 and 10. The
basic idea is to treat the spacecraftconstellationas a systemofbodies
that are � xed relative to each other and then to control the system
as a whole.

Preliminary results were originally reported in Ref. 11, where
fuel optimizationwas performed in two dimensions. Similar results
are reported in Ref. 12, where the spacecraft are not required to
maintain relative positioning throughout the maneuver.

The remainder of this paper is organized as follows. First, our
notation is de� ned, and the basic assumptions made throughout the
paper are stated. Second, the cost function is de� ned, and the basic
open-loop control algorithm is derived. Third, the cost function is
analyzed and an optimization algorithm is discussed. Fourth, the
simulation results using a constellationwith four spacecraftare dis-
cussed. Finally, the last section gives our conclusions.

De� nitions and Assumptions
This section establishes the notationand assumptions that will be

used throughout the paper. Assuming that there are N spacecraft in
the constellation, de� ne N + 2 coordinate frames as follows. Let

0 be the inertial coordinate frame with orthonormal basis vectors
{i0 , j0, k0}. Let R be a coordinate frame designated as the rotation
frame, with orthonormal basis vectors {iR , jR , kR}. The frame R

is used to specify the point of rotation of the constellation. Each
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Fig. 1 Problem geometry.

of the N spacecraft is associated with a coordinate frame ` with
associated orthonormal bases {i ,̀ j ,̀ k`}.

Let r ,̀ and rR be the position vectors of coordinate frames ,̀
and R , respectively,in the inertial frame. Also let rR` be de� ned as
the vectors from R to .̀ To maintain the constellation formation
throughouta rotationmaneuver, it is desiredthat rR` remain constant
with respect to the rotation frame R . The geometry is shown in
Fig. 1.

De� ne M` to be the mass of the t̀h spacecraft and f`(t) to be the
fuel mass containedon the t̀h spacecraftat time t . Furthermore, as-
sume each spacecraftis equippedwith an orthogonalset of thrusters
capable of producing thrust T` in any direction. The dynamics for
the t̀h spacecraft are modeled by the following equations:

M`r̈` = {T ,̀ f`(t) > 0

0, otherwise

Çf` = { ¡ c ( j Ta j̀ + j Tr j̀ + j Tt j̀ ), f`(t ) > 0

0, otherwise (1)

where c is a proportionality constant and Ta ,̀ Tr ,̀ and Tt` are the
axial, radial, and transverse components of T` expressed in the `

coordinate frame.
The control objective is to rotate the entire constellation through

an angle ˆu about a unit vector z that is referenced to the coordi-
nate frame R . This rotation can be speci� ed by a unit quaternion
q = [zT sin( ˆu / 2), cos( ˆu / 2)]T . Given a rotation quaternion q, the
quantities z and ˆu can be found by the inverse quaternion formulas
given in Ref. 13.

The major assumptionsmade throughoutthe paper are as follows.
1) The constellationis in free space. 2) The thrust magnitude of the
thrusters for an individual spacecraft is � nite, but collectively the
thrusters can produce force in any direction. 3) Each spacecraft is a
rigidbodywith mass that is time invariant.4) Rotationsof the space-
craft are carried out using means other than thrusters, for example,
momentum wheels; therefore, rotational motion is not considered
when calculating fuel usage. 5) The position r` of each spacecraft
can be determined with respect to the coordinate frame O . 6) The
thrust magnitude is allowed to range continuouslybetween the sat-
uration limits of the thruster.

Note that these assumptionsimply perfectnavigationinformation
andperfectthrusterperformance.Robustnessof thederivedmethods
with respect to imperfect navigation information and thrusters has
not been studied.

If any of these assumptions are relaxed, the results of this paper
will need to be modi� ed. For example, if the constellation is not in
free space, then orbital dynamics will affect the fuel consumption.If
certain thrust directionscannot be produced, then a sequenceof ma-
neuversmay be required to accomplisha rotation, thereby requiring
a different fuel analysis. If the mass of the fuel is on the order of the
massof the spacecraft,then theanalysiswouldneedto bemodi� ed to
use the rocketequation.Similarly, rotationaldynamicswould add an
additional level of complexity.Addressing the last two assumptions
is necessary to accomplish � xed-formation maneuvers in general.

Static Rotations
This section derives an algorithm for picking the location of

the rotation point, that is, rR , such that, given the initial fuel dis-
tribution { f1(t0), . . . , fN (t0)}, the � nal fuel distribution { f1(t0 +
t f ), . . . , fN (t0 + t f )} minimizes the following functional:

J = min
rR { N

^̀
= 1

[ f`(t0) ¡ f (̀t0 + t f )]2

+ l

N

^̀
= 1

f (̀t0 + t f )

S N
j = 1

f j (t0 + t f )
log

f`(t0 + t f )

S N
j = 1

f j (t0 + t f )
} (2)

The � rst term in this functional represents the total amount of fuel
expended by the constellation.The second term is motivated by the
negative entropy of a probability distribution (Ref. 2, pp. 12–15),
which is minimum for a uniform distribution, that is, the second
term will be minimized when fi (t0 + t f ) = f j (t0 + t f ) for all
i, j 2 {1, . . . , N}.

An alternative to entropy is the function

N

î = 1

N

ĵ 6= i

[ fi (t0 + t f ) ¡ f j (t0 + t f )]2 (3)

which is also minimized when fi (t0 + t f ) = f j (t0 + t f ). The use
of Eq. (3) gives similar results to those reported in this paper. The
entropy term was selectedbecause in simulation studies it equalized
the fuel distribution more uniformly.

To minimize Eq. (2), we need to express f`(t0 + t f ) in terms of
rR . For a given rR , we � nd f (̀t0 + t f ) in two steps: First, determine a
constellation rotation trajectory within the thrust capability of each
spacecraft in the constellation.Second, calculate the fuel consumed
by each spacecraft in following the rotation trajectory. The details
of these steps are discussed in the next two sections.

Constellation Rotation Trajectory
Note that the rotationalaccelerationfor the constellationis limited

by the linear acceleration capability of each spacecraft and by the
distanceof each spacecraft from the axis speci� ed by z. Because we
are considering the rotation of individual spacecraft about a � xed
axis in space, the acceleration of each spacecraft is composed of
transverse and radial (centripetal) accelerations with respect to the
rotation axis: a` = at` + ar ,̀ where at` and ar` are the transverse
and radial accelerations, respectively.

Let d` be the shortest vector between the rotation axis z and the
t̀h spacecraft, and de� ne u (t ) as the constellation rotation angle.

The vector d` can be found by using the geometry shown in Fig. 2.
The projection of rR` onto the z axis is given by zT rR ,̀ where z
and rR` are referenced to the same coordinate frame. Therefore, the
shortest vector from the z axis to ` is

d` = rR` ¡ (zT rR )̀z = (I ¡ zzT )rR` (4)

where I is the 3 £ 3 identity matrix.
For general rotations, k ar k̀ = k d k̀ Çu 2 and k at k̀ = k d k̀ ¨u ; there-

fore it can be seen that the magnitude of the acceleration for each
spacecraft is proportional to the distance of the spacecraft from the
rotation axis:

k a k̀ = k d k̀ Ï ¨u (t )2 + Çu (t )4

Fig. 2 Distance of the t̀h spacecraft to the z axis.
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If we de� ne s ` as the magnitude of the smallest available maxi-
mum thrust in any direction for the t̀h spacecraft (i.e., spacecraft`
can producea thrust of at least s ` in any speci� ed direction), then the
lowest maximum linear acceleration that each spacecraft is capable
of is s `/ M :̀

k d k̀ Ï ¨u (t )2 + Çu (t)4 · s `/ M`

The maximumangularaccelerationof the constellationwill be max-
imally constrainedby the linear accelerationcapabilityof the space-
craft in the constellation.Speci� cally, the spacecraftwith the largest
ratio between the distance from the z axis (k d k̀ ) and its acceleration
capability (s `/ M`) will limit the angular acceleration of the entire
constellation. Denoting the index of the limiting spacecraft as b
gives

b = arg max
1 ·`· N

(M`/ s )̀ k d k̀ (5)

The angular motion of the entire constellation,given by u (t ), must
be constrained according to the following relation:

Ï ¨u (t)2 + Çu (t )4 · s b / M b k d b k (6)

By constraining the motion in this manner, the required thrust to
track whatever trajectory is speci� ed will never exceed the thrust
capabilitiesof any of the spacecraft. Furthermore, this conservative
approach leaves some excess thrust capability for rejecting distur-
bances or responding to tracking errors.

To estimate the amount of fuel spent by each spacecraft during
a constellation rotation, a trajectory for the rotation must be deter-
mined. The analysis given here assumes that the constellation is
rotated via a trajectory corresponding to a bang-off-bang acceler-
ation pro� le. This thrust pro� le is optimal (Ref. 14, pp. 675–710)
for a double-integratorplant with actuator saturation.Although lin-
ear accelerationsduring the accelerationand decelerationphases of
the trajectory are not constant for each spacecraft (the centripetal
componentchangeswith Çu ), the assumption of a bang-off-bangtra-
jectory is a reasonable approach for the constellationrotation prob-
lem. The analysis approach taken is not limited to bang-off-bang
trajectories.Other trajectories,such as polynomialsplines, could be
analyzed as well.

Letting u (t ) be the rotation angle of the constellation about the
z axis at time t, where t0 is the starting time for the rotation, the
rotation trajectory for the constellation is given by the following
equations

¨u (t ) =
ì
í
î

a , 0 · t · tw
0, tw · t · t f ¡ tw
¡ a , t f ¡ tw · t · t f

Çu (t ) =
ì
í
î

a t , 0 · t · tw
a tw , tw · t · t f ¡ tw

a (t f ¡ t ), t f ¡ tw · t · t f

u (t ) =
ìï
í
ïî

1
2
a t2 , 0 · t · tw

a [tw t ¡ t 2
w / 2], tw · t · t f ¡ tw

a [tw (t f ¡ tw ) ¡ (t f ¡ t )2 / 2], t f ¡ tw · t · t f

(7)

where tw is the width of the thrust pulse.
Notice that the maximum linear acceleration for each of the

spacecraft in the constellation occurs at t ¡ t0 = tw when ¨u (t )
and Çu (t ) are at their maxima simultaneously: ¨u (tw + t0) = a and
Çu (tw + t0) = a tw .

With the constellationgeometry and trajectory type determined,
the next step is to formulate an expressionthat will allow us to solve
for the unknown trajectory parameters ( a and tw ) given the constel-
lation parameters (k db k , s b , and M b ) and the speci� ed trajectory
parameters ( ˆu and t f ). This is done by � rst setting the maximum

acceleration of spacecraft b (which is tracking the bang-off-bang
rotation trajectory) to the acceleration bound:

k d b k Ï a 2 + ( a tw )4 = s b / M b (8)

Noting that ˆu = u (t f + t0) = a tw (t f ¡ tw ), we can solve for a to
obtain

a = ˆu / tw (t f ¡ tw ) (9)

By substituting for a in Eq. (8) and manipulating the resulting ex-
pression, we � nd that

ˆu 2

c2(1 ¡ c)2
+

ˆu 4

(1 ¡ c)4
= ( s b t 2

f

k db k M b )
2

(10)

where

tw = ct f , 0 < c · 1
2

(11)

Further manipulation yields a sixth-order polynomial in c:

W (c) = c6 ¡ 4c5 + 6c4 ¡ 4c3 ¡ [( ˆu 4 + ˆu 2 ¡ K ) / K ]c2

+ 2( ˆu 2 / K )c ¡ ˆu 2 / K = 0 (12)

where K = ( s b t2
f / k d b k M b )

2
. When solving this expression for c,

we are interested in the real roots that fall within the range (0, 1
2 ) be-

cause roots outside this range are physicallymeaningless.As Fig. 3
shows, solution of Eq. (12) results in four scenarios of interest: 1)
no roots between 0 and 1

2 , 2) two identical roots between 0 and 1
2 ,

3) two different roots between 0 and 1
2 , and 4) one root between 0

and 1
2
. Case 1 results when the trajectory duration t f is too short for

spacecraft b to accomplish the trajectory given the rotation angle
and its acceleration capabilities. Case 2 occurs when the minimum
possible trajectory duration that is within the capabilities of space-
craft b is chosen. Case 3 is unusual in that two different values of c
are found that result in Eq. (8) being satis� ed. However, the smaller
value of c gives a more fuel-ef� cient trajectory and, therefore, is
chosen when case 3 occurs. Case 4 occurs when the acceleration
capabilitiesof the spacecraft are not stressed by the selection of t f .

In selecting the trajectory duration, two speci� c conditions are
of interest: case 2 that results in the minimum possible trajectory
duration for the formation and the transition between cases 3 and 4
whereone real rootis equal to 1

2
. We will considerthe lattercondition

� rst.
If t f is chosen to be suf� ciently large, case 4 results, and the

desired trajectory is well within the capabilities of the spacecraft.
The transitionbetweencases3 and 4 occurswhen tw = t f / 2. Letting
tw = t f /2 in Eq. (9) and substituting into the acceleration bound in
Eq. (8) yield

( s b

M b k d b k )
2

=
ˆu 2

(t f /2)4
+

ˆu 4

(t f / 2)4

Solving for t f gives

t f,4 = 2! (M b k d b k / s b ) ˆu Ï 1 + ˆu 2

When t f = t f ,4 the result is case 3 with one of the roots of Eq. (12)
beingexactly 1

2 as expected.If t f > t f ,4 , then there is always a unique
solution in the interval (0, 1

2 ).
Of greater interest is the minimum possible trajectory duration

t f,min for the spacecraft formation (case 2). For a given constella-
tion of spacecraft (with predetermined capabilities) and a speci� ed
rotation angle ˆu , the selection of trajectory duration t f determines
which of the cases results.As can be seen from Fig. 3, case 2 occurs
when W (c) = 0 and d W / dc = 0 for the same c = c0:

d W

dc

ê
ê
ê
ê c = c0

= W (c) j c = c0 = 0

where

d W

dc
= 6c5 ¡ 20c4 + 24c3 ¡ 12c2 ¡

2( ˆu 4 + ˆu 2 ¡ K )
K

c + 2
ˆu 2

K
(13)
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Fig. 3 Roots of W (c).

is determined from Eq. (12). By the equating of the expressions for
W (c) and d W / dc, the following polynomial expression results:

c6 ¡ 10c5 + 26c4 ¡ 28c3 ¡ [( ˆu 4 + ˆu 2 ¡ 13K ) / K ]c2

+ [2( ˆu 4 + 2 ˆu 2 ¡ K ) / K ]c ¡ 3 ˆu 2 / K = 0 (14)

where, in this case, K = ( s b t 2
f ,min / k d b k M b )

2
. This expression can

be solved for c = c0 by � nding the real root between 0 and 1
2
. Once

c0 is known, the minimum � nal time t f,min can be calculated by
rewriting Eq. (10) as

t f,min = [ ( k db k M b

s b )
2

( ˆu 2

c2
0(1 ¡ c0)2

+
ˆu 4

(1 ¡ c0)4 ) ]
1
4

(15)

Notice that t f ,min is dependent on c0, that c0 is dependent on K ,
and that K is dependent on t f,min. To solve for t f ,min , Eqs. (14)
and (15) are solved recursively starting with an initial estimate of
t f ,min = t f,4 . Convergence to the solution typically requires only
several recursions. From the value of c found from the roots of
W (c), values for a and tw can be calculated from Eqs. (9) and (11),
respectively.

In summary, given a speci� ed constellation rotation angle ˆu , tra-
jectory duration t f > t f,min , thrust capability s b , mass M b , and dis-
tance from the rotation axis k d b k of the limiting spacecraft, the
parameters that complete the characterization of the constellation
rotation trajectory can be determined: the switching time tw and the
angular acceleration a .

In this development, we treat the trajectory duration, or alterna-
tively the time required for the formation reorientation to be com-
pleted, as a parameter to be selected. Intuitively, the trajectory du-
ration also strongly affects the amount of fuel required to complete
the maneuver. If fuel minimization is a high priority, the trajectory
duration should be selected as large as possible while still meeting
the mission objectives.

Fuel Usage
We must now derive an expression that relates the fuel expended

by the t̀h spacecraft to the trajectory of the constellation.The fuel
usagefor each spacecraftwill vary throughoutthe rotationmaneuver
and can be calculated for each of the three phases of the trajectory:
acceleration,coast, and deceleration.

During the acceleration phase, fuel is expended to accelerate the
spacecraft transversely and radially with respect to rotation about
the z axis. By drawing on Eq. (1), the fuel expended by spacecraft
`during the acceleration phase can be calculated as follows:

f`(tw + t0) ¡ f (̀t0) = ¡ c * tw + t0

t0

( j Ta j̀ + j Tr j̀ + j Tt j̀ ) dt

= ¡ c M k̀ d k̀ * tw + t0

t0

[a + a 2(t ¡ t0)
2]dt

= ¡ c M k̀ d k̀ a ( tw + a
t 3
w

3 )
During the coast phase of the trajectory (tw < t ¡ t0 · t f ¡ tw ), the
spacecraftwill need to thrust to provide the centripetal acceleration
required to track the arc traced out by the constellation. The fuel
required to accomplish this is given by

f`(t f ¡ tw + t0) ¡ f`(tw + t0)

= ¡ c * t f ¡ tw + t0

tw + t0

( j Ta j̀ + j Tr j̀ + j Tt j̀ ) dt

= ¡ c M k̀ d k̀ a 2t 2
w * t f ¡ tw + t0

tw + t0

dt

= ¡ c M k̀ d k̀ a 2t 2
w (t f ¡ 2tw )

During the deceleration phase, fuel is expended to bring the space-
craft to a stop and to keep the spacecraft rotating about the z axis.
Fuel usage is calculatedin a manner similar to the precedingphases:

f`(t f + t0) ¡ f`(t f ¡ tw + t0)

= ¡ c * t f + t0

t f ¡ tw + t0

( j Ta j̀ + j Tr j̀ + j Tt j̀ ) dt

= ¡ c M k̀ d k̀ * t f + t0

t f ¡ tw + t0

( a + a 2(t f ¡ t + t0)
2) dt

= ¡ c M k̀ d k̀ a ( tw + a
t 3
w

3 )
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The total fuel consumed by the t̀h spacecraftduring the rotationof
the constellation is given by the sum of the fuel consumed during
each of the three phases:

f (̀t f + t0) ¡ f (̀t0) = ¡ c M k̀ d k̀ a (2tw + a t2
w t f ¡ 4

3
a t 3

w ) (16)

Optimal Point of Rotation
The results of the preceding section can be summarized by the

following algorithm for computing the cost function J in Eq. (2).
Algorithm 1: Input rR , q, t f , l , and {s ,̀ M ,̀ r`(t0), f`(t0)}N

`= 1,
and compute the following: 1) z, ˆu ; 2) rR`(t0) = r`(t0) ¡ rR , ` =
1, . . . , N ; 3) d (̀t0), `= 1, . . . , N , from Eq. (4); 4) b from Eq. (5);
5) c from Eq. (12); 6) tw from Eq. (11); 7) a from Eq. (9); and 8)
f`(t f + t0) from Eq. (16). The output is J from Eq. (2).

It is evident from Eq. (2) and the algorithm just listed that J is
a complicated function of rR . It is natural to wonder about the dif-
� culty of optimizing J . The next section contains a mathematical
analysis of the cost function and is followed by our recommenda-
tions for an algorithm that optimizes J as a function of rR .

Analysis of the Cost Function
The objectiveof this section is to analyze the natureof J . Figure 4

shows four contour plots of J , projected onto a plane perpendicular
to z, as a functionof rR for the parameters listed in Table 1. The £ ’s
in Fig. 4 represent the location of the spacecraft. The s represents
the center of inverse fuel mass de� ned as

r(0)
R = [ N

^̀
= 1

r`(t0)
f (̀t0) /

N

ĵ = 1

1
f j (t0) ] (17)

Intuitively, r(0)
R will be close to spacecraft that are low on fuel.

Figure 4a shows J when the initial fuel is equally distributedamong
the spacecraftand where fuel equalizationis emphasized.Figure 4b
shows J when fuel minimization is emphasized. When l = 0, the
initial fuel distribution is not relevant. Figures 4c and 4d are for
medium values of l (l = 100). Figure 4c shows J when one space-
craft is almost depletedof fuel. In that case, the optimal rR is located
close to the spacecraft that is depleted of fuel. Figure 4d shows J
when two spacecraft are almost depleted of fuel. In that case, the
optimal rR is centered between the spacecraft that are low on fuel.

Figure 4 shows cusps in the contour plot J that appear to be
aligned along certain lines. These cusps suggest that the gradient
of J is discontinuous along these lines. Also, the smoothness of
the contours away from these lines suggest that J is continuously
differentiable in most of IR3 . These observationswill be made pre-
cise in the following lemmas. The apparent regions come from the
partitioningdue to Eq. (5). Let j be the region in IR3 that is farther
from the j th spacecraft than from any other spacecraft (weighted
by M j / s j ). These regions can be de� ned explicitly as follows. Let

j = {x 2 IR3 : j = arg max
1 ·`· N

M`

s `

k d` ¡ x k }
=́

i 6= j
{x 2 IR3 :

M j

s j
k d j ¡ x k >

Mi

s i
k di ¡ x k }

Table 1 Parameters for Fig. 4

Parameter Value

q [0, 0, sin( p /2), cos( p /2)]T

r1(t0), m (110, 0, 0)T

r2(t0), m (0, 200, 0, 0)T

r3(t0), m (500, ¡ 500, 0)T

r4(t0), m ( ¡ 100, ¡ 100, 0)T

s , N (700l , 700l , 700l , 700l )
M , kg (200, 100, 50, 200)
t f , s 40,000
c , s/m 0.000088673

a) ¹ = 104 and f`̀(t0) = [1, 1, 1, 1] kg

b) ¹ = 0 and f`̀(t0) = [1, 1, 1, 1] kg

c) ¹ = 102 and f`̀(t0) = [1, 1, .01, 1] kg

d) ¹ = 102 and f`̀(t0) = [.01, 1, 1, .01] kg

Fig. 4 Contour plots of the function J.

De� ne ¯
j as the closure of j , that is,

¯
j =́

i 6= j
{x 2 IR3 :

M j

s j
k d j ¡ x k ¸

Mi

s i
k di ¡ xk }

Each pair of spacecraft de� ne the line

{x 2 IR3 : (M j / s j ) k d j ¡ x k = (Mi / s i ) k di ¡ xk }
These lines form the boundaries of j . Figure 5 shows a sequence
of plots that describe how 3 is de� ned for a constellation of
four spacecraft. Figures 5a–5c de� ne the regions corresponding
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to (M3 / s 3) k d3 ¡ x k > (M1 / s 1) k d4 ¡ xk , (M3 / s 3) k d3 ¡ x k > (M2 /
s 2) k d2 ¡ x k , and (M3 / s 3) k d3 ¡ xk > (M4 / s 4) k d1 ¡ xk , respec-
tively. Figure 5d de� nes the region 3 as the intersection of these
three regions. In a similar manner, regions 1 , 2 , and 4 can be
de� ned.

The following two lemmas ensure that for any con� guration of
N spacecraft, there are at most N disjoint regions that completely
� ll IR3 .

a) c)

b) d)

Fig. 5 De� ning region D3 for the objective function J.

Fig. 6 Fuel used after a single rotation.

Lemma 1: i \ j = ; , i 6= j .
Proof: See the Appendix.
Lemma 2: The Ä N

i = 1
¯

i = IRN .
Proof: See the Appendix.
The contours in Fig. 4a indicate that although J is not convex, it

is continuousand has a unique minimum. The question is whether a
gradientdescentalgorithmcan beused to minimize J . The following
theorem characterizes the continuity of J and its gradient.

Theorem 1: If
N

^̀
= 1

f (̀t f ) 6= 0

then the following statements hold.
1) J (rR ) is continuouson IR3 .
2) If Mi / s i = M j / s j for all i, j 2 1, . . . , N , then J (rR ) is con-

tinuously differentiableon IR3 .
3) Otherwise, it is continuously differentiable on Ä N

`= 1 ` (but
not on the boundaries).

Proof: See the Appendix.

Optimization Procedure
All that remains is to choose an optimizationalgorithm that min-

imizes J in Eq. (2) to � nd the fuel optimal center of rotation rR .
Because gradient information is available, it is possible to use a
gradient descent algorithm that is modi� ed to handle the possible
discontinuities between the regions .̀ An alternative is to use a
direct search method such as the Nelder–Mead Simplex method de-
scribed in Refs. 15 and 16 (pp. 305–309). The advantage for this
particular problem is that derivative information is not used, and
the algorithm easily passes over the discontinuities in the gradient.
Also, ef� cient implementationsof the Nelder–Mead algorithmexist
(Ref. 17, pp. 2.4–2.5). One of the disadvantagesof the Nelder–Mead
algorithm is that it can be very expensive and/or time consuming
for problems with objective functions that are severely elongated
or when the dimensions of the problem become large.15 Because
Eq. (2) does not suffer from either of these problems, it appears to
be well suited for our application. The Nelder–Mead algorithm is
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initialized, by using the center of inverse fuel mass at time t0, de-
� ned in Eq. (17) and shown with a s in Fig. 4. The point r(0)

R is seen
to be relatively close to the desired minimum of J .

Based on the constellation rotation trajectory determined by the
optimization process, the open-loop control law for each of the `
spacecraft can be found:

T` = M`a` = M`(ar` + at`)

=

ìïï
í
ïïî

M`[a z £ rR` + ( a t)2z £ (z £ rR )̀], 0 · t · tw
M`( a tw )2z £ (z £ rR`), tw · t · t f ¡ tw

M`[ ¡ a z £ rR `+ ( a (t f ¡ t ))2z
£ (z £ rR`)], t f ¡ tw · t · t f

(18)

The torque for 0 · t · tw causesthe formationto spinup, the torque
for tw · t · t f ¡ tw causes the formation to spin at a constant rate,
and the torque for t f ¡ tw · t · t f causes the formation to spin
down.

Simulation Results
This section describes simulation results using the approach de-

scribed in this paper. Simulations were performed in MATLAB®

and Simulink. The numerical values used for the simulation are
given in Table 1 with the exception that the mass distribution is
changed to M = (200, 200, 200, 200) kg. The initial fuel distribu-
tion is f`(t0) = (1, 1, 1, 1) kg. The parameter l allows tradeoffs
between minimizing the total fuel used and equalizing fuel across
the formation. When l = 0 fuel is minimized, as l ! 1 fuel is
equalized. The fuel used by each spacecraft after a single 90-deg
rotation is shown in Fig. 6. Figure 6a is for l =0, that is, fuel min-
imization; Fig. 6b is for l = 100, that is, a tradeoff between fuel
minimization and fuel equalization; and Fig. 6c is when l =105,
that is, fuel equalization.The total fuel used by all of the spacecraft
is 0.0014 kg for l =0, 0.0015 kg for l =100, and 0.0016 kg for
l = 105. Notice that when fuel is equalized, it is not necessarily
minimized. In general, minimization and equalization are con� ict-
ing criteria.

The fuel used after 15 consecutive randomly selected rotations
is also shown in Fig. 6. Cases where l =0, l =100, and l = 105

are shown in Figs. 6a, 6b, and 6c, respectively. For l = 0 the total
fuel used was 0.0058 kg, for l =100 kg the total fuel used was
0.0107 kg, and for l = 105 the total fuel used was 0.0116 kg.

Conclusions
The physical location of the axis about which a constellation of

spacecraft rotates determines the fuel consumed by each spacecraft
during the maneuver. We have derived an algorithm that � nds the
optimal location for the axis of rotation, trading off overall fuel min-
imization and fuel equalization across a constellationof spacecraft
in free space. The simulation results show that fuel minimization
and fuel equalization are con� icting criteria. Note that minimum
fuel rotations will result in fuel starvation for some spacecraft. Fuel
is simultaneously minimized and equalized only if the spacecraft
are an equal distance from the center of inverse fuel mass, and the
thrust capabilitiesof the spacecraft are identical. This would be the
case for three identical spacecraft in an equilateral triangle, but is
not true if the spacecraft are not identical.

The control law derived de� nes fuel optimal trajectories for each
spacecraft in the constellation.These trajectories could be used for
feedforwardcontrol,with additionalfeedbackused for robustnessto
uncertaintiesand disturbancerejection.Because the approach taken
is conservative (only the most performance-limitedspacecraft is at
its thrust limit at just two instants during the trajectory), the addi-
tional thrust required for feedback control could be easily accom-
modated by the spacecraft implying that the prescribed trajectories
would still be feasible.

Finally, the optimization algorithm described could be used to
determine the amount of fuel required by an entire interferometry
mission. If the desired life of the mission and the desired star loca-
tions are known, the amount of fuel required to transition between

stars can be estimated with the algorithm described. This could
be embedded in a larger optimization algorithm that computes the
optimal sequence of stars and the resulting fuel required for each
spacecraft. If it is desired, for cost purposes, that the spacecraft be
identical, then the optimizationalgorithmshould be performedwith
large l .

Appendix: Proofs
Proof of Lemma 1

Suppose that x 2 i \ j , then

x 2 i ) (Mi / s i ) k di ¡ x k > (M j / s j ) k d j ¡ x k

x 2 j ) (M j / s j ) k d j ¡ x k > (Mi / s i ) k di ¡ x k

which is a contradiction.

Proof of Lemma 2
Pick an arbitrary x 2 IR3 . Suppose that x 62 Ä N

i = 1
¯ i . Now x 62

¯
1 ) (M1 / s 1) k d1 ¡ xk < (M ĵ / s ĵ ) k d ĵ ¡ xk for some ĵ 2 {2, . . . ,

N}. Renumber the spacecraft such that ĵ = 2, then (M1 / s 1) k d1 ¡
x k < (M2 / s 2) k d2 ¡ x k . Now x 62 ¯

2 ) (M2 / s 2) k d2 ¡ x k <
(M ĵ / s ĵ ) k d ĵ ¡ x k for some ĵ 2 {3, . . . , N}. Renumber the space-
craft such that ĵ = 3, then (M1 / s 1) k d1 ¡ xk < (M2 / s 2) k d2 ¡ xk <
(M3 / s 3) k d3 ¡ x k . Repeat the argument for ¯

3, . . . , ¯
N ¡ 1 to get

(M1 / s 1) k d1 ¡ xk < (M2 / s 2) k d2 ¡ xk < ¢ ¢ ¢ < (MN / s N ) k dN ¡ x k

Now x 62 ¯
N ) (MN / s N ) k dN ¡ x k < (M ĵ / s ĵ ) k d ĵ ¡ x k for some

ĵ 2 {1, . . . , N ¡ 1}, which is a contradiction.

Proof of Theorem 1
DifferentiatingEq. (2) with respect to rR gives

@J

@rR
=

N

^̀
= 1

¡ 2[ f`(t0) ¡ f (̀t f )]
@ f (̀t f )

@rR

+
N

^̀
= 1

log[ f`(t f )

S j f j (t f ) ] æè
æ
è

ì
í
î

[ ^
j

f j (t f ) ] @ f`(t f )

@rR

¡ f`(t f ) [ ^
j

@ f j (t f )

@rR ]}/ [ ^
j

f j (t f ) ]2ö
ø
ö
ø

Assuming that

^
j

f j (t f ) > 0

then @J / @rR is continuous if fi (t f ) and @ fi (t f ) /@rR are continu-
ous in rR . From Eqs. (16), (9), and (11), we obtain the following
expression for fi (t f ):

fi (t f ) = fi (t0)

¡ c Mi k di k [ 2 ˆu

t f (1 ¡ c)
+

ˆu 2

t f (1 ¡ c)2
¡

4 ˆu 2c

3t f (1 ¡ c)2 ]
Both c and k di k depend on rR so that

@ fi (t f )

@rR
=

@ fi (t f )

@ k di k
@ k di k
@rR

+
@ fi (t f )

@c

@c

@rR

where

@ fi (t f )

@ k di k
= ¡ c Mi[ 2 ˆu

t f (1 ¡ c)
+

ˆu 2

t f (1 ¡ c)2
¡

4 ˆu 2c

t f (1 ¡ c)2 ]
is a continuous function of k di k and

@ fi (t f )

@c
= ¡ c Mi[ 2 ˆu

t f (1 ¡ c)2
+

2 ˆu 2

t f (1 ¡ c)3
¡

4 ˆu 2(1 + c)
t f (1 ¡ c)3 ]
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is continuousin c as long as c 2 [0, 1
2
]. Here k di k = k (I ¡ zzT )(ri ¡

rR) k is clearly a continuously differentiable function of rR , and
so the continuity properties of J are determined by the continuity
properties of c, where c is a root of the sixth-order polynomial
given in Eq. (12), which can be rewritten in the following form that
is standard for the Evans root locus:

1 +
1
K [ ¡ ( ˆu 4 + ˆu 2)c2 + 2 ˆu 2c ¡ ˆu 2

c6 ¡ 4c5 + 6c4 ¡ 4c3 + c2 ] = 0

By standard root locus theory, the roots are a continuousfunctionof
1/ K = k d b k 2 M 2

b / s 2
b t 4

f , where k d b k and b are functions of rR . Here
b is a constantfunctionof rR in each region j , with a discontinuous
switch on the boundaries.Therefore, 1/ K will also be a continuous
functionof rR oneach region,therebyestablishingstatement3 of the
lemma.At the boundaries k db k is continuous(but not differentiable)
and so 1/ K is continuousat the boundary if Mi / s i = M j / s j for all
i and j , establishingstatement 2. Because @J /@rR is continuousfor
all but a set of measurezero (the region boundaries), J is continuous
on all of IR3 .
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